
OTIC iLL.

OFFICE OF NAVAL RESEARCH

Contract N00014-89-J-1530

CTask No. NR372-160

TECHNICAL REPORT NO. 26
0
NTIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

I by

E. K. U. Gross and W. Kohn

Prepared for publication

in

Density Functional Theory of Many-Fermion Systems

ed. S. B. Trickey, (Academic Press: Boston (1990))

D T IC Department of Physics

ELEC'E University of California, Santa Barbara

APR 3 0 1990 Santa Barbara, CA 93106

D

Approved for Public Release

Reproduction in whole or in part is permitted for any purpose of the United States
Government.

This document has been approved for public release and sale; its distribution is unlim-
ited.

May 1990

go o4 ; 21 ' 084



SECURITY CLASSIFICATION OF THIS PAGE (16ben Datainered) J
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TECHNICAL REPORT NO. 26 7N00014-O
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

TIME-DEPENDENT DENSITY-FUNCTIONAL TECHNICAL REPORT
THEORY 1/01/90 - 12/31/90

6. PERFORMING ORG. REPORT NUMBEA

7. AUTHOR(s) I. CONTRACT OR GRANT NUMBER(#)

E. K. U. GROSS AND W. KOHN N00014-89-J-1530

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

UNIVERSITY OF CALIFORNIA AREA A WORK UNIT NUMBERS

PHYSICS DEPARTMENT, SANTA BARBARA, CA 93106
CONTRACTS & GRANTS, CHEADLE HALL, ROOM 3227 TASK NO. 372-160

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

OFFICE OF NAVAL RESEARCH MAY 1990
ELECTRONICS & SOLID STATE PHYSICS PROGRAM IS. NUMBER OF PAGES

800 N. QUINCY, ARLINGTON, VA 22217 -3-
14. MONITORING AGENCY NAME I ADDRESS(If dillerent tram Controlling Office) IS. SECURITY CLASS. (of this report)

OFFICE OF NAVAL RESEARCH DETACHMENT

1030 EAST GREEN STREET UNCLASSIFIED
PASADENA, CA 91106 ISO. DECLASSIFICATION/DOWNGRADING

SCHEDULE

1. DISTRIBUTION STATEMENT (of this "*port)

"APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED"

17. DISTRIBUTION STATEMENT (of the abstreet entered In Block 20, It different fram Report)

REPORTS DISTRIBUTION LIST FOR ONR PHYSICS DIVISION OFFICE--

UNCLASSIFIED CONTRACTS

IS. SUPPLEMENTARY NOTES

Density Functional Theory of Many-Fermion Systems, Time-Dependent Density-
Functional Theory, ed. S. B. Trickey, (Academic Press: Boston (1990))

l. KEY WORDS (Continue on reverse aide II neceeary and Identify by block number)

time-dependent density functional theory, frequency-dependent linear response,
local field correction, frequency-dependent local' density approximation,
photoabsorption of atoms and molecules, response of metallic surfaces

20. ABSTRACT (Continue on reveree aide It necessary and Identify by block number)

FORM

DD I JA .7 1473 SOITIO. OF O SSv ss IS OBSOLETE

S/N 0102- LF- 01d 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)



E'-,ECURITY CLASSIFICATION OF THIS PAG.E (When Daa Enteed)

Density functional theory for stationary states or ensembles i a for-
mulation of many-body theory in terms of the particle density, /(r). It
is now a mature subject which has had many successful applications.

Time-dependent density functional theory as a complete formalism
is of more recent origin. A detailed description of time-dependent
density-functional fo malism is presented with emphasis on evolving
applications.

S; N 0102- LF- 014- 6601

SECURITY CLASSIFICATION Of THIS PAGE("#R Deta Ent.,d)



To appear in: Density Functional Theory of
Many-Fermion Systems, edited by S.B. Trickey
(Academic Press, 1990)

TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

E.K.U. Gross

W. Kohn Acco.7 Fo, .

)epartment of Physics DVIC 0

University of California

Santa Barbara, CA 93106
By.. ........

Distribulio!-q

A~'d~tbqr cdes

. .Avj,, w, or

1. Introdiuction All e~d

2. Formal Framework

2.1. One-to-one mapping between time-dependent potentials

and time-dependent densities

2.2. Variational principle

2.3. Time-dependent Kohn-Sham scheme

3. Frequency-dependent linear response

3.1. Selfconsistent equations for the linear density response

3.2. Approximations for the exchange-correlation kernel

3.3. Applications



-2-

1. INTRODUCTION

Density functional theory for stationary states or ensembles is a for-

mulation of many-body theory in terms of the particle density, p(r).

Based on the work of Hohenberg and Kohn1 (HK) and Kohn and

Sham2 (KS), it is now a mature subject which has had many success-

ful applications. In retrospect, the stationary Thomas-Fermi theory3 ,4

and the Hartree5 and Hartree-Fock-Slatere equations can be viewed as

approximations of density functional theory.

Time-dependent density functional theory as a complete formalism 7

is of more recent origin, although a time-dependent version of Thomas-

Fermi theory was proposed as early as 1933 by Bloch.8 The time-

dependent Thomas-Fermi model provides good first estimates for a

variety of physical processes such as atomic9 - 11 and nuclear 12,13 col-

lisions, nuclear giant resonances, 14- 16 atomic photoabsorption, 17-19

and plasmons in inhomogeneous media.20- 25  The time-dependent

Hartree and Hartree-Fock equations2 '6 have been used extensively for

more quantitative studies of nuclear dynamics27,28 and atomic29 - 32

as well as molecular3 3 collision processes. However these methods ne-

glect correleation effects. Inclusion of such effects would require the

time-dependent analog of the stationary KS equations.

The first, and rather successful, steps towards a time-dependent KS

theory were taken by Peuckert 3 4 and by Zangwill and Soven. 35 These

authors treated the linear density response of rare-gas atoms to a

time-dependent external potential as the response of non-interacting

electrons to an effective time-dependent potential. In analogy to sta-

tionary KS theory, this effective potential was assumed to contain an

exchange-correlation part, vzc(rt), in addition to the time-dependent

external and Hartree terms:

Vef f(rt ) = v(rt)+f P(rit) d3r,+Vzc(rt).
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Peuckert suggested an iterative scheme for the calculation of v.,

while Zangwill and Soven adopted the functional form of the static

exchange-correlation potential,

vzc (rt) =-- bEzcjp(rlt)j
p(rt)'

where EcIpl is the exchange-correlation energy functional of ordinary

density functional theory. For this functional, Zangwill and Soven em-

ployed the local density approximation,

E,,[p(rlt),l = f Ezc(p(r't))p(r~t)d3rI,

where ezc (p) is the exchange-correlation energy per particle of a static

uniform electron gas of density p. The static approximation is obvi-

ously valid only if the time-dependence of p(rt) is sufficiently slow. In

practice, however, it gave quite good results even for the case of rather

rapid time-dependence.

Significant steps towards a rigorous foundation of time-dependent

density functional theory were taken by Deb and Ghosh36 - 39 and by

Bartolotti 40- 43 who formulated and explored Hohenberg-Kohn and

Kohn-Sham type theorems for the time-dependent density. Each of

these derivations, however, was restricted to a rather narrow set of

allowable time-dependent potentials (to potentials periodic in time

in the theorems of Deb and Ghosh, and to adiabatic processes in the

work of Bartolotti).

Finally, a general formulation covering essentially all time-dependent

potentials of interest was given by Runge and Gross.7 A novel fea-

ture of this formalism, not present in ground-state density functional

theory, is the dependence of the respective density functionals on the

initial (many-particle) state *(to). A detailed description of the time-

dependent density-functional formalism will be presented in section
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2. The central result is a set of time-dependent KS equations which

are structurally similar to the time-dependent Hartree equations but

include (in principle exactly) all many-body correlations through a

local time-dependent exchange correlation potential.

To date, most applications of the formalism fall in the regime of lin-

ear response. In section 3, we shall describe the linear-response limit

of time-dependent density functional theory along with applications

to the photo-response of atoms, molecules and metallic surfaces.

Beyond the regime of linear response, the description oi atomic and

nuclear collision processes appears to be a promising field of applica-

tion where the time-dependent KS scheme could serve as an econom-

ical alternative to time-dependent configuration-interaction calcula-

tions. 44- 49 So far, only a simplified version of the time-dependent KS

scheme has been implemented in this context. 50- 5 3

Another possible application beyond the regime of linear response

is the calculation of atomic multiphoton ionization which, in the case

of hydrogen, has recently been found5 4 ,55 to exhibit chaotic behaviour.

A full-scale numerical solution of the time-dependent Schr6dinger

equation for a hydrogen atom placed in strong time-dependent elec-

tric fields has recently been reported.5 6 A time-dependent Hartree-

Fock calculation has been achieved for the multiphoton ionization

of helium.5 7 For heavier atoms an analogous solution of the time-

dependent Kohn-Sham equations offers itself as a promising applica-

tion of time-dependent density functional theory.

2. FORMAL FRAMEWORK

2.1. One-to-one mapping between time-dependent potentials

and time-dependent densities

Density functional theory is based on the existence of an exact

mapping between densities and external potentials. In the ground-
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state formalism,1 the existence proof relies on the Rayleigh-Ritz min-

imum principle for the er -rgy. Straightforward extension to the time-

dependent domain is not possible since a minimum principle is not

available in this case. The proof given by Runge and Gross7 for time-

dependent systems is based directly on the Schr~dinger equation*

at %Pt) = k~t),k(t).(I

We shall investigate the densities p(rt) of electronic systems evolving

from a fixed initial (many-particle) state

P(to) = To (2)

under the influence of different external potentials of the form

'0) = -,=Tifd3 r V+(r)v(rt) ,(r). (3)

In the following discussion, the initial time to is assumed to be finite

and the potentials are required to be expandable in a Taylor series

about to:

v(rt) j'Z=07! vj(r)(t-to)J. (4)

No further assumptions concerning the size of the radius of conver-

gence are made. It is sufficient that the radius of convergence is

greater than zero. The initial state *10 is not required to be the

ground state or some other eigenstate of the initial potential v(rto) =

vo(r). This means that the case of sudden switching is included in

the formalism. On the other hand, potentials that are switched-

on adiabatically from to = -oo are excluded by the condition (4).

* Atomic units are used throughout.
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Besides an external potential of the form (3), the Hamiltonian in

Eq. (1) contains the kinetic energy of the electrons and their mutual

Coulomb repulsion:

H(t) -T-U+ + (t) (5)

with

T =Tfd 3r (r)(- F (r) (6)

and

& = ffd 3 rf d3 r (r)t+(r) r rI r ) r). (7)

The number of electrons, N, is fixed.

We shall demonstrate in the following that the densities p(rt)

and p'(rt) evolving from a common initial state T0 under the influ-

encc :. two potent'ais v(rt) and -V(rt) are always different provided

that the potentials differ by more than a purely time-dependent (r-

independent) function:t

v(rt) 5 v'(rt)+c(t). (8)

Since both potentials can be expanded in a Taylor series and since they

differ by more than a time-dependent function, some of the expansion

coefficients vi(r) and v,.(r) (cf. Eq. (4)) must differ by more than

t If v and v' differ by a purely time-dependent function, the resulting
wave functions *(t) and V(t) differ by a purely time-dependent phase
factor and, consequently, the resulting densities p and p' are identical.
This trivial case is excluded by the condition (8), in analogy to the
ground-state formalism where the potentials are required to differ by
more than a constant.
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a constant. Hence there exists some smallest integer k>O such that

vk(r)--(r) [v(rt)-v'(rt)lt=to # const. (9)

From this inequality we shall deduce in a first step that the current

densities j(rt) and j'(rt) corresponding to v(rt) and v'(rt) are differ-
ent. In a second step it will be demonstrated that the densities p(rt)

and p'(rt) are different.

Since we consider, by construction, only states T(t) and VIi(t) that

evolve from the same initial state To0, the current densities J and j1
as well as the densities p and p' are identical at the initial time to:

j(rto) =j'(rto) - < oj(r)lo > J0 (r), (10)

p(rto) = p'(rto) = < *Io(r)l'Io > po(r). (11)

j(r) denotes the paramagnetic current-density operator

J(r) =- " (12)

and p(r) is the usual density operator

A(r) = £ ¢(r),(r). (13)

The time evolution of the current densities J and j' is most easily com-

pared by means of the equations of motion

;tJ (rt)- -i < Wl(t)ja(r),f[(t)]l*(t ) > (14)

a 1j (rt)= < V (t) (r), Al1(t)] (t) > . (15)
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Taking the difference of these two equations at the initial time to one

finds

3j(rt)-j'(rt)It=to = -i < ToI(r), (A (to)-"'(to))]I'0 >
- -po(r)V(v(rto)-v'(rto)). (16)

If the potentials v(rt) and v'(rt) differ at t = to (i.e., if Eq. (9) is satis-

fied for k = 0) then the right-hand side of Eq. (16) cannot vanish iden-

tically. Consequently .,,rt) and j'(rt) will become different infinitesi-

mally later than to. If the minimum integer k for which Eq. (9) holds

is greater than zero, one has to evaluate the (k+ 1)th time-derivative of

j and j' at t0 . To this end, the quantum mechanical equation of motion

jj< *( (t) 0(t) ) > = < W (t) 6 (t) - i[6(t), A (t)] (t) >

is applied (k + 1) times; the first time with 6 1 (t) = j(r), the second

time with 6 2(t) = -iEj(r),/H(t)], etc. After some straightforward al-

gebra one obtains

O:+ I
[j (rt) -j'(rt)Jtt

S-p 0 (r)V(-[v(rt)-v'(rt)t___to - 0, (17)

where the last inequality follows from (9). Again the inequality (17)

implies that j(rt) and j'(rt) will become different infinitesimally later

than to. This completes the proof for the current densities.

In order to prove that the densities p(rt) and p'(rt) are different,

one employs the continuity equation:

8 [p(rt)-p'(rt) = -V.J(rt)-J'(rt)]. (18)
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Evaluating the (k-+ 1) th time-derivative of Eq. (18) at the initial time

to, one finds by insertion of Eq. (17)

8 k+2

, [p(rt) - p'(rt)t=t 0 = V.[po(r)Vwk(r)] (19)

where

ak
wk(r) at[v(rt)-v'(rt)Itt. = vk(r)-v'(r). (20)

It remains to be shown that the right-hand side of Eq. (19) cannot

vanish identically if the condition (9), wl (r) , const, is satisfied. The

proof is by reductio ad abourdum: Assume that the right-hand side of

Eq. (19) vanishes and consider the integral

fd 3 r po(r)[Vwk(r) 2  (21)

which, by means of Green's theorem, can be written as

= -fd 3 r wk(r)V.[po(r)Vwk(r)I + fdS.(po(r)wk(r)Vwk (r)).(22)

As long as one deals with realistic, i.e. experimentally realizable po-

tentials v(rt), the surface integral in (22) vanishes: Experimentally

realizable potentials are always produced by real (this means, in par-

ticular, normalizable) external charge densities pet(rt) so that, in the

Coulomb gauge,

v(rt) - fd3r7' e1 t ( r t )  (23)Ir -r V1

A Taylor expansion of this equation about t = to demonstrates that

the expansion coefficients vk(r), and hence the functions wtk(r), fall



- 10 -

off at least as 1/r asymptotically so that the surface integral vanishes.

(For more general potentials see remark (iii) below.) The first term

of (22), on the other hand, is zero by assumption. Thus the complete

integral (21) vanishes and, since the integrand is nonnegative, one con-

cludes

p0(r)[Vwk(r)j2 = 0

in contradiction to wk(r) # const.* This completes the proof of the

theorem. A few remarks are in order at this point:

i) By virtue of the 1-1 correspondence established above (for a

given TO), the time-dependent density determines the external po-

tential uniquely up to within an additive purely time-dependent func-

tion. The potential, on the other hand, uniquely determines the time-

dependent wave function, which can therefore be considered as a func-

tional of the time-dependent density,

0(t) = '[p](t), (24)

where 1[pj is unique up to within a purely time-dependent phase fac-

tor. As a consequence, the expectation value of any quantum mechani-

cal operator (t) is a unique functional of the density,

Q(t) = < 'PfP1(t)It)l [p1(t) > -QpI(t); (25)

the ambiguity in the phase of P[p] cancels out. As a particular ex-

ample, the right-hand side of Eq. (14) can be considered as a density

It is assumed here that p0 (r) does not vanish on a set of positive

measure. (Otherwise no contradiction is reached since po(r) could be
zero in exactly those regions of space where wk(r) $ const.) Densi-
ties that vanish on a set of positive measure correspond to potentials
having infinite barriers. Such potentials have to be excluded from the
ordinary ground-state theory as well (see, e.g., Ref. 58).
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functional which depends parametrically on r and t:

P[p](rt) _=-i < *ptjjr,(tjjt)>. (26)

This implies that the time-dependent particle and current densities

can always be calculated (in principle exactly) from a set of "hydrody-

namical" equations:

jtp(rt) = -V.j(rt)

(27)
j(rt) = PP] (rt).

In practice, the functional P[p] is of course only approximately known.

ii) In addition to their dependence on the density, the functionas

Q[p], defined by Eq. (25), implicitly depend on the initial state To.

No such state dependence exists in the ground state formalism. Of

course one would prefer to have functionals of the density alone rather

than functionals of p(rt) and 10. It should be noted, however, that for

a large class of systems, namely those where to is a non-degenerate

gound state, Q[p] is indeed a functional of the density alone. This is

because any non-degenerate ground state %F0 is a unique functional of

its density po(r) by virtue of the traditional HK theorem. 1 One has to

emphasize that this class of systems also contains all cases of sudden

switching where 401 is a ground state, but not the ground state of the

initial potential v(rto).t

iii) It is essential for the proof of the 1-1 correspondence that the

surface integral in (22) vanishes. As long as one considers only realis-

tic physical potentials of the form (23), a vanishing surface integral is

t Whether an exclusive dependence on the density alone can be demon-
strated for an even larger class of systems is an open question at
present.
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guaranteed. However, if one allows more general potentials, the sur-

face integral does not necessarily vanish. Consider a Liven initial state

TO0 that leads to a certain asymptotic form of p0(r). Then one can

always find potentials which increase sufficiently steeply in the asymp-

totic region such that the surface integral does not vanish. For such

cases, the right-hand side of Eq. (19) can be zero, as was demonstrated

by Xu and Rajagopal5 9 (see also Dhara and Gosh 60 ) with the explicit

examples

po(r) = Ae Ar wk (r) = BeAr AA > 0 (28)

and

po(r) = const, wk(r) satisfying V 2 wk(r) = 0. (29)

If one intends to include potentials other than those given by Eq. (23),

an additional condition must be imposed to ensure that the surface

integral in (22) vanishes. For a giver. ,nitial state %I0, the allowable po-

tentials must satisfy the condition*

lim {r 2 pO(r)vj(r)Vvj(r)} = 0 (30)

for all coefficients vj(r) of the Taylor expansion (4). Thus, the density

functionals Q[p] given by Eq. (25) not only depend explicitly on the

initial state %10; the latter also determines the set of allowable poten-

tials and hence the domain of densities for which the functionals Q[p]

are defined. One has to emphasize, however, that the cases excluded

by the additional condition (30) are largely unphysical. The examples

The condition p0wkVwk---0, given by Dhara and Ghosh60 for r--+oo,

is not sufficient to ensure a vanishing surface integral since it does not
account for the fact that the spherical surface increment dS increases
proportional to r2
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(28) and (29) of Xu and Rajagopal, for instance, lead to an infinitet

potential energy fp(rt)v(rt)d3 r per particle in the vicinity of t = to.

It would be desirable to prove the 1-1 correspondence under a physical

condition, such as the requirement of a finite potential energy per par-

ticle, rather than under the more restrictive mathematical condition

(30). Whether such a proof can be constructed is currently an open

question.

2.2. Variational principle

The solution of the time-dependent Schr6dinger equation (1) with

initial condition (2) corresponds to a stationary point of the quantum

mechanical action integral

A --ft'o dt < I(T C, t- ff (t) q(t) >. (31)

Since there is a 1-1 mapping between time-dependent wave functions,

TP(t), and time-dependent densities, p(rt), the corresponding density

functional

A[p] ft dt < T'p](t)Ii AI TIP](t) > (32)

must have a stationary point at the correct time-dependent density

(corresponding to the Hamiltonian A(t) and the initial state To0).

Thus the correct density can be obtained by solving the Euler equation

6AIA = 0 (33)

with appropriate boundary conditions. The functional A[p] can be

t Note that a function satisfying V 2wk(r) = 0 for all r cannot vanish
asymptotically (except in the trivial case wk (r) E 0), nor can it ap-
proach a constant asymptotic value (except in the case wk(r) - const).
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written as

A[p] = B[p] - f " dtf d'r p(rt)v(r) (34)

with a universal (Io-dependent) functional B[p], formally defined as

B[p] = t' dt < T[p](t);Ii -T-t1[p](t)>. (35)

2.3. Time-dependent Kohn-Sham scheme

A particularly important application of the stationary action prin-

ciple described in the last section is the derivation of a time-dependent

KS scheme. To this end we first consider a system of non-interacting

fermions subject to an external potential v(rt). The exact many-

particle wave function is then a time-dependent Slater determinant

*(t) which, by virtue of the Runge-Gross theorem, is a functional,

* (pl(t), of the time-dependent density. (Note that the argument of

section 2.1 holds true for any particle-particle interaction U, in par-

ticular also for U = 0. The functionals P[p], B[p], etc., however de-

pend on the particular U considered.) The action functional for non-

interacting particles then has the form

Aa[pl = B.[p] - fo dtfd3 r p(rt)v(rt) (36)

where

B,[p] = f" dt < f[p](t) i -1sIpJ(t)>. (37)

According to the variational principle of section 2.2, the exact density

can be obtained by solving the Euler equation
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bA sp = =v(rt). (38)
bp~rt) p(rt)

Next we assumet that a single-particle potential v, (rt) exists such that

the interactinf density is identical with the density

p(rt) = "N ort)j 2  (39)

of the non-interacting system described by the Schr6dinger equation

a t = (-- 2--+ v(rt)) v,,(rt). (40)

If such a potential exists it must be unique (by virtue of the Runge-

Gross theorem) and, , view of Eq. (38), it can be represented as

v, (rt) = bB I f(rt)=p(rt), (41)
= t(rt)

where the functional derivative of B, has to be evaluated at the exact

interacting (= non-interacting) density p(rt).

To determine the potential v. (rt) more explicitly one employs the

variational principle for the interacting system. First one rewrites the

total action functional (34) as

Afp] = B,[p] - f " dtfd3r p(rt)v(rt)

- f f dtfd3rf d3 ,J p(rt)p(r't) -A
o rpj, (42)

where the "exchange-correlation" part of the action functional is for-

mally defined as

t This assumption is analogous to the familiar assumption of simulta-
neous interacting and non-interacting v-representability made in the
ground-state formalism.
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A [p = B,[p]dtfdrfdr p(rt)p(rt) B[p]. (43)

0p[o Ir - rl

Inserting (42) in the variational equation (33) one finds

b -[v(rt)+ f d3 r' p (='t) 6Af [ 0.
1 r-r'I + 6prt) (44)

Since this equation is solved only by the exact interacting density

one obtains, by comparison with Eq. (41), the explicit representation

v.(rt) = v(rt)+fd3r' p(r't) +AzcJpj (45)
Ir-rl + 6p(rt)"

Eqs. (39), (40) and (45) constitute the time-dependent KS scheme.

Compared to the time-dependent Hartree-fock method, this scheme

has two advantages:

a) The time-dependent effective potential v, (rt) is local (i.e. a mul-

tiplication operator in real space).

b) Correlation effects are included.

Explicit approximations for the time-dependent exchange-correlation

potential

vzC(rt) = b (46)bp(rt)

will be discussed in section 3.2 in the context of linear response theory.

The density functionals P[p],B[p],Axc[:p, etc, are well-defined

only for 'v-representable" densities, i.e., for densities that come from

some time-dependent potential satisfying Eqs. (4) and (30). Since

the restriction to v-representable densities is difficult to implement in

the basic variational principle of section 2.2, a Levy-Lieb-type 58 ' 6 1' 62

extension of the respective functionals to arbitrary (non-negative, nor-

malizable) functions p(rt) appears desirable. Two different proposals
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of this type have been put forward E , far.63 ,6 4

Besides these mathematical generalizations, a number of exten-

sions of the time-dependent density-functional formalism to physically

different situations have been developed. Those include spin-polarized

systems, 6 multicomponent systems, e6 time-dependent ensembles,6 7,68

and external vector potentials. 4 ,69

3. FREQUENCY-DEPENDENT LINEAR RESPONSE

3.1. Selfconsistent equations for the linear density response

In this section we shall consider the around-state response of elec-

tronic systems. In that case, the initial density po(r) resulting from

the potential vo(r) can be calculated from the ordinary (ground-state)

KS scheme:

7 2 +vo(r)+f d~'p~l VZjo r)p (r) = (0 ) (r) (47)~

p0(r) = Fj(occ)j~p°(r)12 .  (48)

At t = to a time-dependent perturbation vl(rt) is switched on, i.e. the

total external potential is given by

v (rt) = Vo rj for t < t0
Ivor) +v 1(rt) for t > to.

Our goal is to calculate the linear density response pl(rt) which is

conventionally expressed in terms of the full response function X as

pI (rt) = f d3 ' Jo' dt'X(rt, r't') v1(r't'). (50)

Since the time-dependent KS equations (39), (40), (45) provide a for-

mally exact way of calculating the time-dependent density, the exact
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linear density response of the interacting system can alternatively be

calculated as the density response of the non-interacting KS system:

Pl(rt) = f d3 r/tof 0dIXKS (rt, rltl)v,1) (r't'). (51)

vu1)(rt) is the time-dependent KS potential (45), calculated to first

order in the perturbing potential. It can be written in the form

(v)(rt) = v 1(rt) + fd 3r' P1(r't)
Ir - rl

+f d3r'f dt'fzc (rt, r/tI)p1 (r't'). (52)

fzc denotes the exchange-correlation response kernel which is formally

defined as the functional derivative of the time-dependent exchange-

correlation potential (46),

fzc(rt, r't') = bVzc1p(rt) (53)bg~rit') I P = P0,

evaluated at the initial ground-state density po(r).

Eqs. (51) and (52) constitute the KS equations for the linear den-

sity response. Given some approximation for the exchange-correlation

kernel f c, these equations provide a selfconsistent scheme to calculate

the density response P, (rt).

The response function XKS is relatively easy to calculate 35 70 (as

opposed to the full response function X). In terms of the stationary

KS orbitals of Eq. (47), the Fourier transform of XKS (rt, r't) with re-

spect to (t-t) is given by

^(0) (r)'°) ( 0 " ( °)O') )
Xw s(re';w) = 1rk f u ) (0) The sumat k on) (54)

w - (C, - Ck) + i6

where Ik and fjare Fermi occupation factors. The summations in
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(54) run over all KS orbitals (including the continuum states).

For the purpose of constructing approximations to the exchange-

correlation kernel fz,, it is useful to express this quantity in terms of

the full response function X. A formally exact representation of f,, is

readily obtained by solving Eq. (50) for vI and inserting the result in

(52). Eq. (51) then yields

f=€(rt,r't') = XK-1 (rt,rt)-x 1 (rt, rt')- 6(t-t') (55)
K SIr- '"'I

By virtue of the Runge-Gross theorem, two potentials

v(rt) = v0(r)+vj(rt) and v'(rt) = v0(r)+v'(rt)

always lead to different densities p(rt) and p'(rt) provided that v, (rt) $
vj (rt) + c(t). This statement does not automatically imply that the

linear density responses p1(rt) and p (rt) produced by v 1(rt) and

Vt(rt) are different; the difference between p(rt) and p'(rt) might show

up only in higher perturbative orders. However, sLice the right-hand

side of Eq. (19) is manifestly of first order in the perturbation, pl(rt)

and p'(rt) must in fact be different. Therefore the time-dependent

KS scheme for the linear density response (Eqs. (51) and (52)) is

well-defined and the inverse response operators X- 1 andX-1 in Eq.

(55) must exist 71 on the set of v-representable densities that corre-

spond to the set of external potentials specified in Sec. 2.1. On

a larger set of potentials, the response functions X and XKS are

not necessarily invertible. In particular, the freauency-deDendent re-

sponse operators x(r,r;w) and XKs(r,r;w) cannot always be in-

verted since they determine, by definition, the linear density response

to adiabatically switched monochromatic perturbations,

v1(rt) = v1 (rw) e -iW C1ItI, -oo:t<oo,
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which are not covered by the Runge-Gross theorem (due to the condi-

tion (4)). As a matter of fact, it has been demonstrated 72,73 that the

response function x(r, r';w) of suitably constructed non-interacting

systems can have eigenvectors with vanishing eigenvalues at isolated

frequencies w0. Consequently the adiabatic density response vanishes

at these frequencies and X(r, r/; wo) is not invertible.

We conclude this section with a discussion of the homogeneous elec-

tron gas, perturbed by an adiabatically switched potential consisting

of a single Fourier component in (qw)-space:

vI(rt) = ei(qr-wt)V1 (qw) e tIl, -oo<t<oo.

Again the Runge-Gross theorem is not applicable in this case.

However, for this particular system the exchange-correlation kernel

can be constructed in explicit terms: The linear density response

p1 (qw) resulting from the perturbation vl(qw) is determined by the

full response function XhoM(qw) of the homogeneous electron gas,

pi(quj) = Xhom(qw)vj(qw). (56)

Defining

f hom1 4w
f grn(qw) -0 omqw) -4 (57)

with xo being the Lindhard function, one finds by insertion in (56):

pl(qw) = xo(qw){vl(qw) + 4 pl(qw) + fhOrn(qw),i(qw)}. (58)
q

Comparison of Eq. (58) with Eqs. (51)-(52) shows that the Fourier

transform fzh~m(r - r', t - t') of fhom(qw) is indeed the exchange-
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correlation kernel of the homogeneous electron gas. f )m(qw) is

closely related to the so-called local field correction G(qw) of the ho-

mogeneous electron gas:

fCm (qw) = 4 G(qw)
q

Using well-known features of the electron gas response functions, f om

can be shown to have the following exact properties:

1. As a consequence of the compressibility sum rule one finds74

lira f h, _ = 0) =d2 (e,() o()

fzC 1qa .:cP)-f() (60)
q--o dp

where ezc (p) denotes the exchange-correlation energy per particle of

the homogeneous electron gas.

2. The third-frequency-moment sum rule leads to75

lira f om _ =

q-.o 
f  °

/ + 6p z - foo(p). (61)

3. According to the best estimates76 '7 7 of ezc(p), the following relation

holds for all densities

fo(@) < foo(p) < 0. (62)

4. In the static limit (w = 0), the short-wavelength behavior is given

by 78
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Urn fz*(q,w=0) g (0)), (63)
q 00 J

where g(r) denotes the pair correlation function.

5. For frequencies w6O, the short-wavelength behavior is79

lim fZCm(q,w#O) = -q'( - g(O)). (64)

6. fz,0m(qw) is a complex-valued function satisfying the symmetry re-

lations

Re fzm (q,w) - Re fOm (q,-w) (65)

Im f ,m(q,w) = -Im fzm(q,-w). (66)

7. fzho' (qw) is an analytic function of w in the upper half of the com-

plex w-plane and approaches a real function f.(q) for w-i-oo.8 0 There-

fore, the function fhc m (qw)-foo (q) satisfies standard Kramers-Kronig

relations:

Rezh*m (qw)- foo(q) = P f- ' &0 ,I f~fm(qw') (67)-00 ~ t -rW1- W

Imfkzhm(qw) = -P-OO Re (10 - foo(q) (68)W1 - W

8. The imaginary part of 4 exhibits the high-frequency behavior

lim Imfhom(q,u)) = ---. (69)

for any q < oo.81 A second-order perturbation expansion 1 ,8 2 of the

irreducible polarization propagator leads to the high-density limit
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c = 237r/15. (70)

9. In the same limit, the real part of fzhc* behaves like8 3

lir Refhm(q,w) = foe(q) + -/. (71)

Since c > 0, the infinite-frequency value foo is approached from above.

This implies, in view of the relation (62), that Re fho'(q = 0,w) can-

not grow monotonically from f.o to fo.

The above features of fhcom are valid for a three-dimensional elec-

tron gas. Analogous results have been obtained for the two-dimensional

case. 8 1,84, 8 5

3.2. Approximations for the exchange-correlation kernel

The time-dependent density-functional formalism described in sec-

tion 2 can be shown 51 to reduce to the traditional HKS formalism for

the class of static initial value problems in which the potential is time-

independent, v(rt) = v(r), and where the initial state %P0 is the ground

state of v(r). In particular, the functional Azc[p] reduces to the usual

exchange-correlation energy if ground-state densities are inserted for

p(rt):

Azc[p] = (t1 -to)'E.,[#j1 for all ground-state densitiesp(r). (72)

This has an immediate consequence for possible approximations to

the functional Az,[p]: If an approximate expression for A.c[p] both

satisfies (72) and is .lcalin ti=, it must necessarily have the form

f " dt E-c(73)
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Of particular interest is the adiabatic local density approximation

AALDA[pj ftldtfd3r [P'ez(P)l p-p(rt) (74)

which is local in time and space. By Eqs. (46) and (53), the exchange-

correlation kernel corresponding to (74) takes the form

fALDA(rt, r't') = 6(t-t')6(r-r) d- [p.,Ezc( (75
cdpT , (P=po (r) (75

Obviously, the static exchange-correlation energy can be expected to

be a good approximation only for very slow time-dependent processes,

i.e., one implicitly invokes an adiabatic approximation. This is also

reflected in the fact that (75) is identical with the zero-frequency limit

(60) of the homogeneous exchange-correlation kernel:

f.LDA(r,r;w) = b(r-r')fPh°"'(q=0,w=0;p)lp=po(r). (76)

Going beyond the adiabatic local density approximation, Gross and

Kohn 83 have proposed an approximation for the exchange-correlation

kernel which explicitly incorporates the frequency dependence. With

respect to spatial coordinates, a local approximation as in (76) is em-

ployed:

f,'LDA(r,r;w) = b(r - r)f m(q-=--O,w;p)1p=p). (77)

The frequency-dependence of Im fh'n (q = 0, w) is approximated by

a Pad4-like interpolation between the high- and the low-frequency lim-

its:

+ .wIm fhfm(q =O,wa) = (1 + b(p).wo2)5 / ' (8
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where

a(p) = -c(y/c)/ 3 (f00(p) fo(p))513

b(p) = ("/C)4/ 3(f00(p)-fo(p))4/
3

n[r( /4)12
"7 4V2_/

fofoo, and c are given by Eqs. (60), (61), and (70), respectively.

For the exchange-correlation energy ezc(p) (which enters fo and f.,o),

the parametrization of Vosko, Wilk and Nusair 77 is employed. Using

the Kramers-Kronig relation (67), the real part can be expressed as

Re f~hm"(q =0, w)

=fo + a* VT4E(/~ - - 'S

82 = + (79)

E and II are complete elliptic integrals of the second and third kind in

the standard notation of Byrd and Friedman. 86

Figs. 1 and 2 show the real and imaginary part of /,m as cal-

culated from (78) and (79). The functions are plotted for the two

density values corresponding to r, = 2 and rs = 4. For the lower den-

sity value (rp = 4), a considerable frequency-dependence is found. The

dependence on w becomes less pronounced for higher densities. In the

extreme high-density limit, the difference between fo and f. tends to

zero. One finds the exact result

f 0 -foo - r,2 for r.-0. (80)
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h w (a. U.)
02

-z-

T5 :

E-

Fig. . maga part of the parametrization for f4M( ,w
f~g~=)(from Ref. 75).
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At the same time, the depth of the minimum of Imfh° m decreases,

again proportional to r2.

We finally mention that an extension of the parametrization (78) to

nonvanishing q was given by Dabrowski. 8 7 A similar interpolation for

the exchange-correlation kernel of the 2-dimensional electron gas has

been derived by Holas and Singwi.81

3.3. Applications

The time-dependent KS scheme defined by Eqs. (51) and (52) has

been successfully applied to the photo-response of atoms35 ,88 ,89 and

molecules, 9° ,9 1 metallic92- 98 and semiconductor99 surfaces and, most

recently, of bulk semiconductors. 100

In the present context, we restrict ourselves to sufficiently low ra-

diation frequencies such that the wavelength is much larger than the

atomic radius and that Compton scattering is negligible. In the case

of atoms, this condition is satisfied for photon energies below %3 keV.

Under these circumstances, the electric field across the atom can be as-

sumed to be constant.

The potential vl(rt) associated with a monochromatic spatially

constant electric field in z-direction is given by

vl(rt) = Ezcoewt. (81)

The induced density change, 6p(rt), is most conveniently character-

ized by a series of multipole moments. The induced dipole moment,

p(t) = -fz6p(rt)d3 r, (82)

can be expanded as 10 1

p(t) = a(w).Ecoswt+j(O) EE±JP(2w) EEcos2wt
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+ (w) : EEEcoswt+4-Y(3w) : EEEcoo3wt, (83)

where the notation is meant to convey the tensorial character of the

quantities a, 0, -y. The first coefficient, a, is termed the (dipole) po-

larizability; 3 and - denote the second-and third-order (dipole) hyper.-

polarizabilities. For ordinary laboratory fields, the electric dipole mo-

ment is adequately described by the polarizability a. In the presence

of intense laser fields, hyperpolarisabilities up to -y have to be taken

into account. Higher orders are negligible in present-day experiments.

For spherically symmetric states 0 is zero.

If one considers only the linear term in Eq. (83)), the Fourier com-

ponents pl(rw) of the first-order density shift pl(rt) can be treated

independently and the frequency-dependent polarizability is given by

a(w) = -jfzpl(r)d3r. (84)

By virtue of the Golden Rule, the photoabsorption cross section is

then proportional to the imaginary part of a(w):

=(w) = 4Ima(w). (85)

Zangwill and Soven 35 have used the time-dependent KS scheme (51)-

(52) to calculate the linear density response of rare-gas atoms to a

perturbation of the form (81). For the exchange-correlation kernel

f., they employed the adiabatic local density approximation (76).

The resulting photoabsorption cross section (as calculated from Eqs.

(84) and (85)) turns out to be in rather good agreement with exper-

iment. As an example, we show in Fig. 3 the photoabsorption cross

section of the Xe atom in the vicinity of the 4d threshold. A few

general remarks are in order at this point:
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Fig. 3. Total photoabsorption cross section of the Xe atom versus
photon energy in the vicinity of the 4d threshold (from Ref. 35). Solid
line: selfconsistent time-dependent KS calculation; dash-dot line: self-
consistent time-dependent Hartree calculation (f., - 0); dashed line:
independent particle result (Hartree and exchange-correlation kernels
neglected); crosses: experimental data from Ref. 102.

i)The calculations of Zangwill and Soven do not show the char-
acteristic autoionization resonances found in high-precision measure-

ments. This is due to the local density approximation employed for
the ground-state exchange-correlation potential in Eq. (47). Since

self-Coulomb and self-exchange energies do not properly cancel in the
local density approximation, the total selfconsistent potential in Eq.

(47) falls off exponentially rather than like -1/r. As a consequence,

the effective potential does not support the high-lying Rydberg states

essential for the description of autoionization resonances. In princi-

ple, the time-dependent KS scheme (51)-(52) should be capable of

describing such effects if a selfinteraction-corrected approximation for
the exchange-correlation potential is used. A different approach to the
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selfinteraction problem was proposed by Zangwill and Soven in a sec-

ond paper,8 9 where they introduced selfenergy corrections directly in

the response function XKS.

ii) Within the original scheme of Zangwill and Soven, the onset of

continuous absorption for each atomic subshell is given by the corre-

sponding KS single-particle energy eigenvalue. This follows directly

from the fact that the response function XKS has poles at the KS

single-particle excitation energies (cf. Eq. (54)). Since the KS ex-

citation energies do not coincide with the exact atomic excitation

energies, the calculated absorption edges are typically several volts

below the observed thresholds. We emphasize that this result is due

to the approximation (76) used for!zc(r, 9;w). The exact function

f, (r, r; w), formally defined as the Fourier transform of (55), has a

rather intricate structure which both removes the incorrect poles of

XKS and gives rise to poles at the correct quasi-particle excitation en-

ergies.

iii) It is of interest to estimate the overall importance of the exchange-

correlation kernel f. The dash-dot curve in Fig. 3 shows the result

obtained with fzc set equal to zero. Deviations from the full calcula-

tion (solid curve) are about 10%. Clearly the full calculation agrees

much better with the experimental values.

iv) Zangwill and Soven have employed the adiabatic local density

approximation (76), in which f., (r, r; w) is replaced by fz, (r, r; w =

0). On the basis of the parametrization (78)-(79) of Gross and Kohn,83

the importance of the frequency dependence of the exchange-correlation

kernel has been estimated: In the frequency range relevant for atomic

photoabsorption, the w-dependent function fx is expected 75 to differ

by at most 2-6% from its zero-frequency value employed in the calcula-

tion of Zangwill and Soven. Since the complete neglect of fz leads to

deviations of only 10%, the effect of the frequency-dependence of fzc

can be estimated to be smaller than 1% in the photoabsorption cross
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section of atoms.

The scheme of Zangwill and Soven has also been applied to calcu-

lations of the photoabsorption of small molecules. 90,9 1 In particular, a

previously unexplained double-peak structure near 15 eV in the pho-

toemission cross section of acetylene could be described successfully.

The adiabatic exchange-correlation functional (74) has also been

employed in calculations of the third-order hyperpolarizabilities de-

fined in Eq. (83). The results obtained by Zangwill 10 3 for rare-gas

atoms are in good agreement with experiment. According to Senatore

and Subbaswamy, 104 however, a term was missing in Zangwill's calcu-

lation. When they include this term, the agreement with experiment

is reduced considerably: The calculated third-order hyperpolarizabil-

ities of rare-gas atoms are too large typically by a factor of 2.

The response problem of surface electrons is to find the currents and
charge densities induced by pert,,rbing electromagnetic fields, and to

calculate the resulting modifications of these fields.

The Hamiltonian governing the electronic dynamics is

A(Pr- t) )2 4"E_(vo(rJ)+v1(ri,t) )

1 r(86)Ir- rjl'

where vo(r) is the potential due to the ion cores and vI(r, t), A,(r,t)

are the perturbing potentials in the transverse gauge (V.A 1 = 0). The

primary objective is to find the first-order density and current changes,

p1 (r, t) andjI(r, t), caused by v, and A,.

In most theoretical work, as well as in this section, the ionic po-

tential, vo(r), is replaced by the potential due to a uniform positive

charge background in a half-space, say z > 0. This is the so-called

jellium model for metal surfaces. In this model there are two intrinsic

microscopic length scales, the inverse Fermi wave-number, kF', and

the Thomas-Fermi screening length (% surface thickness), icT ,. In the
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present context, both lengths are typically of the order a O- cm.

In the most important applications the perturbing potentials v1

and A, vary on a length scale, t, which satisfies t a. Examples

are the scalar potential v1(r) due to an external charge at a distance

z3),a, or the vector potential, A 1 (r, t), associated with a light wave of

wavelength A-a. The corresponding n, and j1 vary on the scale of t

in the x-y plane but, because of the abrupt drop of the unperturbed

density at the surface (on the scale of a), they vary on the short

scale a in the z-direction. Formal arguments due to Feibelman10 s

have shown that, to leading order in a/t, the effect of the surf.e

on the electromagnetic fields far from the surface (IzJ > a) is entirely

characterized by two complex frequency-dependent lengths, d1u (w) and

dj(w).-

Actually, for the jellium model d11(w)-O.* To define dj(w) we

Fourier analyze all physical quantities parallel to the surface, in the x-

y plane. For example, a Fourier component of the induced charge den-

sity becomes

pi(r,w) =_ p1(z,w)t i q 11-r ,  (87)

where q11 = (qzqO) (and Jq11 .a 1). Then daL(w) is given by

d_ (w) fzp1(zw)dzfp1(zw)dz, (88)

i.e. it is the (complex) center of mass of the induced surface charge.

d± (w) is the generalization of the static image plane introduced by

Lang and Kohn. 1°6

This d_.(w) is then the object of quantitative calculations. They

* This result has been obtained in the random phase approximation in

Ref. 105. It is easily established as a rigorous many-body result for
the jellium model (W. Kohn, unpublished).
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require the density response, pl(Zw), to a uniform exte..ial electric

field perpendicular to the surface. The calculation was first carried

out in the random phase approximation (RPA), equivalent to time-

dependent Hartree theory, in which effects of exchange and correlation

are neglected in the self consistent perturbing potential (52). These

calculations led to very interesting results not present in classical

Maxwell theory, the surface photo effect, excitations of bulk and sur-

face plasmons, and hints of an additional surface-localized plasmon.

They help to explain experimental data on the photo-yield spectrum

of At. 107

Some recent calculations9 2- 98 have employed the time-dependent

response theory of Gross and Kohn, including exchange-correlation ef-

fects either within the adiabatic approximation (75) or the frequency-

dependent parametrization (78)-(79). They have confirmed the qual-

itative conclusions of the RPA calculations, with quantitative modifi-

cations generally of the order of 10%.

Finally we mention some recent formal work on the response prop-

erties of real crystal surfaces (not the jellium model). 108 Here again

the response properties of the surface are characterized by complex

d-parameters having the dimension of a length. Quantitative calcula-

tions have been reported 0 8 to be in progress.
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